Fully Homomorphic Encryption without Bootstrapping
نویسندگان
چکیده
We present a radically new approach to fully homomorphic encryption (FHE) that dramatically improves performance and bases security on weaker assumptions. A central conceptual contribution in our work is a new way of constructing leveled fully homomorphic encryption schemes (capable of evaluating arbitrary polynomial-size circuits), without Gentry’s bootstrapping procedure. Specifically, we offer a choice of FHE schemes based on the learning with error (LWE) or ring-LWE (RLWE) problems that have 2 security against known attacks. For RLWE, we have: • A leveled FHE scheme that can evaluate L-level arithmetic circuits with Õ(λ · L) per-gate computation – i.e., computation quasi-linear in the security parameter. Security is based on RLWE for an approximation factor exponential in L. This construction does not use the bootstrapping procedure. • A leveled FHE scheme that uses bootstrapping as an optimization, where the per-gate computation (which includes the bootstrapping procedure) is Õ(λ), independent of L. Security is based on the hardness of RLWE for quasi-polynomial factors (as opposed to the sub-exponential factors needed in previous schemes). We obtain similar results for LWE, but with worse performance. We introduce a number of further optimizations to our schemes. As an example, for circuits of large width – e.g., where a constant fraction of levels have width at least λ – we can reduce the per-gate computation of the bootstrapped version to Õ(λ), independent of L, by batching the bootstrapping operation. Previous FHE schemes all required Ω̃(λ) computation per gate. At the core of our construction is a much more effective approach for managing the noise level of lattice-based ciphertexts as homomorphic operations are performed, using some new techniques recently introduced by Brakerski and Vaikuntanathan (FOCS 2011). ∗Sponsored by the Air Force Research Laboratory (AFRL). Disclaimer: This material is based on research sponsored by DARPA under agreement number FA8750-11-C-0096 and FA8750-11-2-0225. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of DARPA or the U.S. Government. Approved for Public Release, Distribution Unlimited. †This material is based on research sponsored by DARPA under Agreement number FA8750-11-2-0225. All disclaimers as above apply.
منابع مشابه
Improved Fully Homomorphic Encryption without Bootstrapping
Gentry’s bootstrapping technique is the most famous method of obtaining fully homomorphic encryption. In previous work I proposed a fully homomorphic encryption without bootstrapping which has the weak point in the enciphering function. In this paper I propose the improved fully homomorphic public-key encryption scheme on non-associative octonion ring over finite field without bootstrapping tec...
متن کاملFully Homomorphic Encryption without bootstrapping
Gentry’s bootstrapping technique is the most famous method of obtaining fully homomorphic encryption. In previous work I proposed a fully homomorphic encryption without bootstrapping which has the weak point in the plaintext [1]. In this paper I propose the improved fully homomorphic encryption scheme on non-associative octonion ring over finite field without bootstrapping technique where the p...
متن کاملOn FHE Without Bootstrapping (Informal)
We investigate the use of multivariate polynomials in constructing a fully homomorphic encryption. In this work we come up with two fully homomorphic schemes. First, we propose an IND-CPA secure symmetric key homomorphic encryption scheme using multivariate polynomial ring over finite fields. This scheme gives a method of constructing a CPA secure homomorphic encryption scheme from another symm...
متن کاملNotes on Two Fully Homomorphic Encryption Schemes Without Bootstrapping
Recently, IACR ePrint archive posted two fully homomorphic encryption schemes without bootstrapping. In this note, we show that these schemes are trivially insecure. Furthermore, we also show that the encryption schemes of Liu and Wang [6] in CCS 2012 and the encryption scheme of Liu, Bertino, and Xun [5] in ASIACCS 2014 are insecure either.
متن کاملFully Homomorphic Encryption with Composite Number Modulus
Gentry’s bootstrapping technique is the most famous method of obtaining fully homomorphic encryption. In previous work I proposed a fully homomorphic encryption without bootstrapping which has the weak point in the plaintext [1][18]. In this paper I propose the improved fully homomorphic encryption scheme on non-associative octonion ring over finite ring with composite number modulus where the ...
متن کاملImproved Fully Homomorphic Encryption with Composite Number Modulus
Gentry’s bootstrapping technique is the most famous method of obtaining fully homomorphic encryption. In previous work I proposed a fully homomorphic encryption without bootstrapping which has the weak point in the plaintext [1],[15]. I also proposed a fully homomorphic encryption with composite number modulus which avoids the weak point by adopting the plaintext including the random numbers in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Colloquium on Computational Complexity (ECCC)
دوره 18 شماره
صفحات -
تاریخ انتشار 2011